Resolution of singularities and the positivity conjecture of Serre Kazuhiko Kurano (Meiji University)

Let \mathfrak{p} and \mathfrak{q} be prime ideals of a regular local ring (A, \mathfrak{m}) satisfying (1) $\mathfrak{p} + \mathfrak{q}$ is an \mathfrak{m} -primary ideal, (2) dim $A/\mathfrak{p} + \dim A/\mathfrak{q} = \dim A$. In [3], Serre conjectured that the intersection multiplicity between $\operatorname{Spec}(A/\mathfrak{p})$ and $\operatorname{Spec}(A/\mathfrak{q})$ is positive, i.e.,

$$\chi_A(A/\mathfrak{p}, A/\mathfrak{q}) := \sum_{i \ge 0} (-1)^i \ell_A(\operatorname{Tor}_i^A(A/\mathfrak{p}, A/\mathfrak{q})) > 0.$$

Let \mathfrak{p}^* be the kernel of the natural ring homomorphism $G_A(\mathfrak{m}) \to G_{A/\mathfrak{p}}(\mathfrak{m} \cdot A/\mathfrak{p})$. Sometimes \mathfrak{p}^* is called the *initial ideal* of \mathfrak{p} . Recently, Dutta [1] proved the inequality $\chi_A(A/\mathfrak{p}, A/\mathfrak{q}) \ge e_{\mathfrak{m}}(A/\mathfrak{p}) \times e_{\mathfrak{m}}(A/\mathfrak{q})$ if $\operatorname{Proj}(G_A(m)/\mathfrak{p}^* + \mathfrak{q}^*)$ is a finite set. Here, $e_{\mathfrak{m}}(A/\mathfrak{p})$ denotes the multiplicity of A/\mathfrak{p} at \mathfrak{m} . There are two key points in his proof. The first one is to use the formula

$$\chi_A(A/\mathfrak{p}, A/\mathfrak{q}) = e_{\mathfrak{m}}(A/\mathfrak{p}) \times e_{\mathfrak{m}}(A/\mathfrak{q}) + \eta_*(\sum_i (-1)^i [\underline{\operatorname{Tor}}_i^{\mathcal{O}_H}(\mathcal{O}_V, \mathcal{O}_W)])$$

as in Example 20.4.3 in [2]. Here, $\pi : H \to \operatorname{Spec}(A)$ is the blow-up at \mathfrak{m} , and V (resp. W) is the strict transform of $\operatorname{Spec}(A/\mathfrak{p})$ (resp. $\operatorname{Spec}(A/\mathfrak{q})$). Set $\eta = \pi|_{\pi^{-1}(\mathfrak{m})} : \pi^{-1}(\mathfrak{m}) \to \operatorname{Spec}(A/\mathfrak{m})$. We denote η_* the induced push-forward map $G_0(\pi^{-1}(\mathfrak{m})) \to G_0(A/\mathfrak{m})$. The second key point is to use Gabber's non-negativity theorem.

The formula as above (Example 20.4.3 in [2]) is proved by blowing up the affine scheme Spec(A[T]) at (\mathfrak{m}, T) .

The aim of my talk is to show that, if there exists a birational map good enough (other than the blowing-up of Spec(A[T]) at (\mathfrak{m}, T)), then Serre's positivity conjecture is true. It is proved in the same way as Dutta's method.

The following is a problem on the existence of a birational map good enough that implies the positivity conjecture.

Problem 1 Let *P* and *Q* be prime ideals of a regular local ring (B, \mathfrak{n}) satisfying (1) $\operatorname{ht}(P) + \operatorname{ht}(Q) = \dim(B) - 1$, (2) $B/\sqrt{P+Q}$ is a discrete valuation ring. Do there exist an ideal *I* of *B* that satisfies the following four conditions?

- 1. $\tilde{X} := \operatorname{Proj}(B[It])$ is regular.
- 2. $I \not\subset \sqrt{P+Q}$.
- 3. Let $\tilde{Y} = \operatorname{Proj}(B/P[(I \cdot B/P)t]), \tilde{Z} = \operatorname{Proj}(B/Q[(I \cdot B/Q)t]), \text{ and } \varphi : \tilde{X} \to \operatorname{Spec}(B)$ be the blow-up along I. Then, $\tilde{Y} \cap \tilde{Z} \cap \varphi^{-1}(\mathfrak{n})$ is a finite set.

4. There exists an irreducible component E of $\varphi^{-1}(\mathfrak{n})$ such that $\operatorname{codim}_{\tilde{X}}E = 1$ and $\tilde{Y} \cap \tilde{Z} \cap \operatorname{reg}(E) \neq \emptyset$.

I do not know if Problem 1 is true or not even in the case where $B = \mathbb{C}[s, t, u]_{(s,t,u)}$ and P and Q are principal ideals.

Putting $B = A[T]_{(\mathfrak{m},T)}$, $P = \mathfrak{p}B$ and $Q = \mathfrak{p}B$, we have the following theorem.

Theorem 2 If Problem 1 is true, then Serre's positivity conjecture is true.

Problem 1 seemes to be very difficult since existence of resolutions of singularity is still a open problem.

Next we weaken the assumption of birationality, i.e., we replace birationality with generically finiteness.

Problem 3 Let P and Q be prime ideals of a regular local ring (B, \mathfrak{n}) satisfying (1) $\operatorname{ht}(P) + \operatorname{ht}(Q) = \dim(B) - 1$, (2) $B/\sqrt{P+Q}$ is a discrete valuation ring. Do there exist proper surjective and generically finite map $\varphi : W \to \operatorname{Spec}(B)$ that satisfies the following four conditions?

- 1. W is regular.
- 2. There exists an openset U of Spec(B) such that $U \ni \sqrt{P+Q}$ and $\varphi^{-1}(U) \to U$ is finite.
- 3. There exist closed subschemes \tilde{Y} and \tilde{Z} such that (1) $\varphi(\tilde{Y}) = V(P)$, (2) $\varphi(\tilde{Z}) = V(Q)$, (3) $\varphi(\tilde{Y} \cap \tilde{Z}) = V(P+Q)$, and (4) $\tilde{Y} \cap \tilde{Z} \cap \varphi^{-1}(\mathfrak{n})$ is a finite set.
- 4. There exists an irreducible component E of $\varphi^{-1}(\mathfrak{n})$ such that $\operatorname{codim}_W E = 1$ and $\tilde{Y} \cap \tilde{Z} \cap \operatorname{reg}(E) \neq \emptyset$.

Theorem 4 If Problem 3 is true, then Serre's positivity conjecture is true.

We give some examples in my talk.

References

- [1] S. P. DUTTA, A special case of positivity II, preprint.
- [2] W. FULTON, Intersection Theory, Springer-Verlag, Berlin, New York, 1984.
- [3] J-P. SERRE, Algèbre locale. Multiplicités, Lect. Note in Math., vol. 11, Springer-Verlag, Berlin, New York, 1965.